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Abstract

In this paper, we study some properties about the second Gaussian curvature of ruled surfaces in a
three-dimensional Minkowski space. Furthermore, we classify ruled surfaces in a three-dimensional
Minkowski space in terms of the second Gaussian curvature, the mean curvature and the Gaussian
curvature.
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1. Introduction

Minimal surfaces are one of main objects which have drawn geometers’ interest for a
long time. In particular, the only minimal ruled surfaces in a three-dimensional Euclidean
spaceE

3 are the planes and the helicoids. In 1983, Kobayashi[8] classified space-like
ruled minimal surfaces in a three-dimensional Minkowski spaceE

3
1, and de Woestijne[12]

extended it to the Lorentz version in 1988. On the other hand, the authors[7] recently
classified minimal ruled surfaces in terms of pointwise 1-type Gauss map inE

3
1.

A surfaceM in a three-dimensional Euclidean spaceE
3 with positive Gaussian curvature

K possesses a positive definite second fundamental formII if appropriately orientated.
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Therefore, the second fundamental form defines a new Riemannian metric onM. In turn,
we can consider the Gaussian curvatureKII of the second fundamental form which is
regarded as a Riemannian metric. If a surface has non-zero Gaussian curvature everywhere,
KII can be defined formally and it is the curvature of the Riemannian or pseudo-Riemannian
manifold (M, II ).

Naturally, we can extend such a notion into that of surfaces in a three-dimensional
Minkowski spaceE3

1. Using classical notation, we denote the component functions of the
second fundamental form bye, f andg. Thus we define thesecond Gaussian curvatureby
(cf. [2])

KII = 1

(|eg| − f 2)2
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(1.1)

It is well known that a minimal surface has vanishing second Gaussian curvature but that a
surface with vanishing second Gaussian curvature need not be minimal.

For study of the second Gaussian curvature, Koutroufiotis[10] has shown that a closed
ovaloid is a sphere ifKII = cK for some constantc or if KII = √

K. Koufogiorgos and
Hasanis[9] proved that the sphere is the only closed ovaloid satisfyingKII = H , whereH
is the mean curvature. Also, Kühnel[11] studied surfaces of revolution satisfyingKII =
H . One of the natural generalizations of surfaces of revolution is the helicoidal surfaces.
Baikoussis and Koufogiorgos[1] proved that the helicoidal surfaces satisfyingKII = H

are locally characterized by constancy of the ratio of the principal curvatures. On the other
hand, Blair and Koufogiorgos[2] investigated a non-developable ruled surface inE

3 such
thataKII + bH, 2a+ b �= 0, is a constant along each ruling. Also, they proved that a ruled
surface with vanishing second Gaussian curvature is a helicoid.

In this article, we investigate and classify a non-developable ruled surface in a three-
dimensional Minkowski spaceE3

1 satisfying the conditions

aKII + bH = constant, 2a− b �= 0, (1.2)

aH + bK = constant, a �= 0, (1.3)

aKII + bK = constant, a �= 0, (1.4)

along each ruling.

2. Preliminaries

Let E3
1 be a three-dimensional Minkowski space with the scalar product of index 1 given

by 〈, 〉 = −dx2
1 +dx2

2 +dx2
3, where(x1, x2, x3) is a standard rectangular coordinate system

of E
3
1. A vectorx of E

3
1 is said to bespace-likeif 〈x, x〉 > 0 orx = 0, time-likeif 〈x, x〉 < 0

andlight-like or null if 〈x, x〉 = 0 andx �= 0. A time-like or light-like vector inE3
1 is said

to becausal.
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Now, we define a ruled surfaceM in a three-dimensional Minkowski spaceE
3
1. LetJ1 be

an open interval in the real lineR. Letα = α(s) be a curve inE3
1 defined onJ1 andβ = β(s)

a transversal vector field alongα. For an open intervalJ2 of R we have the parametrization
forM

x = x(s, t) = α(s)+ tβ(s), s ∈ J1, t ∈ J2.

The curveα = α(s) is called abase curveandβ = β(s) adirector curve. In particular, ifβ
is constant, the ruled surface is said to becylindrical, andnon-cylindricalotherwise.

First of all, we consider that the base curveα is space-like or time-like. In this case,
the director curveβ can be naturally chosen so that it is orthogonal toα. Furthermore, we
have ruled surfaces of five different kinds according to the character of the base curveα

and the director curveβ as follows. If the base curveα is space-like or time-like, then the
ruled surfaceM is said to be of typeM+ or typeM−, respectively. Also, the ruled surface
of typeM+ can be divided into three types. In the case thatβ is space-like, it is said to
be of typeM1+ orM2+ if β′ is non-null or light-like, respectively. Whenβ is time-like,β′

must be space-like by causal character. In this case,M is said to be of typeM3+. On the
other hand, for the ruled surface of typeM−, it is also said to be of typeM1− orM2− if β′
is non-null or light-like, respectively. Note that in the case of typeM− the director curve
β is always space-like (cf.[5,7]). The ruled surface of typeM1+ orM2+ (resp.M3+,M1− or
M2−) is clearly space-like (resp. time-like). But, if the base curveα is a light-like curve and
the vector fieldβ alongα is a light-like vector field, then the ruled surfaceM is called a
null scroll [6].

On the other hand, many geometers have been interested in studying submanifolds of
Euclidean and pseudo-Euclidean space in terms of the so-called finite type immersion[3].
Also, such a notion can be extended to smooth maps on submanifolds, namely the Gauss map
[4]. In this regards, the authors defined pointwise finite type Gauss map[7]. In particular,
the Gauss mapG on a submanifoldM of a pseudo-Euclidean spaceE

m
s of indexs is said

to be ofpointwise1-typeif �G = fG for some smooth functionf onM where� denotes
the Laplace operator defined onM. The authors showed that minimal non-cylindrical ruled
surfaces in a three-dimensional Minkowski space have pointwise 1-type Gauss map[7].
Based on this fact, the authors proved the following theorem which will be useful to prove
our theorems in this paper.

Theorem 2.1 ([7]). Let M be a non-cylindrical ruled surface with space-like or time-like
base curve in a three-dimensional Minkowski space. Then, the Gauss map is of pointwise
1-type if and only if M is an open part of one of the following spaces: the space-like or
time-like helicoid of the1st, the2nd and the3rd kind, the space-like or time-like conjugate
of Enneper’s surface of the2nd kind.

3. Some examples

Before going into the study about a relation between the second Gaussian curvature and
the mean curvature of ruled surfaces, let us see some examples of surfaces inE

3
1.
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Fig. 1. A conoid of the 1st kind.

Example 3.1 (Conoid of the 1st kind). For a smooth functionφ(s), we consider the surface
M in E

3
1 defined by

x(s, t) = (t sinhs, t coshs, φ(s)), t < |φ′(s)|.
This parametrization defines a non-cylindrical ruled surface of typeM1+ in E

3
1, which is

called a conoid of the 1st kind (Fig. 1). In this case, the second Gaussian curvatureKII is
given by

KII = −φ′′(s)
(−t2 + φ′2(s))3/2

t.

Furthermore, the mean curvatureH is obtained as

H = φ′′(s)
2(−t2 + φ′2(s))3/2

t.

Thus, the conoid of the 1st kind satisfiesKII = −2H .

Example 3.2 (Conoid of the 2nd kind). For a smooth functionφ(s), the surface inE3
1

defined by

x(s, t) = (t coshs, φ(s), t sinhs)

is a non-cylindrical ruled surface of typeM3+, which is said to be a conoid of the 2nd kind
in E

3
1 (Fig. 2). The second Gaussian curvatureKII is given by

KII = φ′′(s)
(t2 + φ′2(s))3/2

t.

Fig. 2. A conoid of the 2nd kind.
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Fig. 3. A conoid of the 3rd kind.

And the mean curvatureH is given by

H = −φ′′(s)
2(t2 + φ′2(s))3/2

t.

Thus, the conoid of the 2nd kind satisfiesKII = −2H .

Example 3.3 (Conoid of the 3rd kind). For a smooth functionφ(s), we consider the surface
M in E

3
1 defined by

x(s, t) = (φ(s), t coss, t sins), t < |φ′(s)|.
This parametrization defines a non-cylindrical ruled surface of typeM1− in E

3
1, which is

called a conoid of the 3rd kind (Fig. 3). The second Gaussian curvatureKII for it is given
by

KII = φ′′(s)
(−t2 + φ′2(s))3/2

t,

and the mean curvatureH is obtained as

H = −φ′′(s)
2(−t2 + φ′2(s))3/2

t.

Thus, the conoid of the 3rd kind satisfiesKII = −2H .

For a specific functionφ and an appropriate interval oft in Examples 3.1–3.3, we have
the graphs shown inFigs. 1–3.

4. Main theorems

In this section we study a ruled surface in a three-dimensional Minkowski spaceE
3
1 sat-

isfying the conditions(1.2)–(1.4). It is well known that a cylindrical ruled surface is devel-
opable, i.e., the Gaussian curvatureK is identically zero. Therefore, the second fundamental
form II is degenerate. Thus, non-cylindrical ruled surfaces are meaningful for our study.

Theorem 4.1. Let M be a non-developable ruled surface with non-null base curve in a
three-dimensional Minkowski space such that the condition aKII + bH, a, b ∈ R − {0},
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2a−b �= 0, is a constant along each ruling. Then, M is an open part of one of the following
surfaces:

1. the helicoid of the1st kind as space-like or time-like surface,
2. the helicoid of the2nd kind as space-like or time-like surface,
3. the helicoid of the3rd kind as space-like or time-like surface,
4. the conjugate of Enneper’s surfaces of the2nd kind as space-like or time-like surface.

Proof. We consider two cases separately.
Case 1. LetM be a non-cylindrical ruled surface of the three typesM1+,M3+ orM1−. Then

the parametrization forM is given by

x = x(s, t) = α(s)+ tβ(s),
such that〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and〈α′, β′〉 = 0. In this caseα is the
striction curve ofx, and the parameter is the arc-length on the (pseudo-)spherical curveβ.
And we have the natural frame{xs, xt} given byxs = α′ + tβ′ andxt = β. Then, the first
fundamental form of the surface is given byE = 〈xs, xs〉 = 〈α′, α′〉 + ε2t

2, F = 〈xs, xt〉 =
〈α′, β〉 andG = 〈xt, xt〉 = ε1. For later use, we define the smooth functionsQ, J andD as
follows:

Q = 〈α′, β × β′〉 �= 0, J = 〈β′′, β′ × β〉, D =
√

|EG− F2|.
In terms of the orthonormal basis{β, β′, β × β′} we obtain

α′ = ε1Fβ − ε1ε2Qβ × β′, β′′ = ε1ε2(−β + Jβ × β′), α′ × β = ε2Qβ
′.

On the other hand, one obtainsEG− F2 = −ε2Q
2 + ε1ε2t

2. And, the unit normal vector
N is written asN = 1/D(ε2Qβ

′ − tβ×β′). Then, the componentse, f andg of the second
fundamental form are expressed as

e = 1

D
(ε1Q(F − QJ)−Q′t + Jt2), f = Q

D
�= 0, g = 0.

Therefore, using the data described above and(1.1), we obtain

KII = 1

f 4

(
fft

(
fs − 1

2
et

)
− f 2

(
−1

2
ett + fst

))

= 1

2Q2D3
(Jt4 + ε1Q(F − 2QJ)t2 + 2ε1Q

2Q′t +Q3(F + QJ)). (4.1)

Furthermore, the mean curvatureH is given by

H = 1

2

Eg− 2Ff + Ge

|EG− F2| = 1

2D3
(ε1Jt2 − ε1Q

′t −Q(F + QJ)). (4.2)

First of all, we suppose thatQ2 − ε1t
2 > 0. We now differentiateKII andH with respect

to t, the results are

(KII )t = 1

2Q2D5
(−ε1Jt5 +Q(F + 2QJ)t3 + 4Q2Q′t2

+ ε1Q
3(5F − QJ)t + 2ε1Q

4Q′), (4.3)
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Ht = 1

2D5
(Jt3 − 2Q′t2 − ε1Q(3F + QJ)t − ε1Q

2Q′). (4.4)

By the assumption(1.2)and the above equations we then have for the parametert

aε1J = 0, aQF+ 2aQ2J + bJQ2 = 0, Q2Q′(2a− b) = 0,

5ε1aQ3F − ε1aQ4J − 3ε1bQ3F − ε1bQ4J = 0, Q4Q′(2a− b) = 0, (4.5)

which imply J = F = 0 and(2a − b)Q′ = 0. Suppose that 2a − b �= 0, thenQ′ = 0.
In this case the surface is minimal. SinceEG− F2 = ε1ε2t

2 − ε2Q
2 andQ2 − ε1t

2 > 0.
Therefore, the surface is space-like or time-like whenε2 = −1 or ε2 = 1, respectively.

But, (ε1, ε2) = (−1,−1) is impossible because of the causal character. Let(ε1, ε2) =
(−1,1). ThenM is of the typeM3+. Thus the surface is a helicoid of the 3rd kind according
to Theorem A. If(ε1, ε2) = (1,±1), thenM is of the typeM1+ orM1−. Hence the surface
is a helicoid of the 1st or 2nd kind according toTheorem 2.1.

Next, we suppose thatQ2 − ε1t
2 < 0. In this case, we have

(KII )t = 1

2Q2D5
(ε1Jt5 −Q(F + 2QJ)t3 − 4Q2Q′t2

+ ε1Q
3(−5F + QJ)t − 2ε1Q

4Q′), (4.6)

Ht = 1

2D5
(−Jt3 + 2Q′t2 − ε1Q(3F + QJ)t + ε1Q

2Q′). (4.7)

Thus, by the similar discussion as above we can also obtainJ = F = 0 andQ′ = 0 when
2a − b �= 0. Therefore, the surface is minimal. SinceEG − F2 = −ε2(Q

2 − ε1t
2) and

Q2−ε1t
2 < 0. Consequently,M is space-like or time-like according toε2 = 1 orε2 = −1,

respectively.
In this case,ε1 = 1. Therefore,M is of typeM1+ orM1− depending onε2 = ±1. Thus,

the surface is a helicoid of the 1st and 2nd kind according toTheorem 2.1.
Case 2. LetM be a non-cylindrical ruled surface of typeM2+ orM2−. Then, the surface

M is parametrized by

x(s, t) = α(s)+ tβ(s),
such that〈β, β〉 = 1, 〈α′, β〉 = 0, 〈β′, β′〉 = 0 and〈α′, α′〉 = ε1(= ±1). We have put the
non-zero smooth functionsq andS as follows:

q = ‖xs‖2 = ε〈xs, xs〉 = ε(ε1 + 2St), S = 〈α′, β′〉,
whereε denotes the sign ofxs. We note thatβ × β′ = β′. Then, the components of the
induced pseudo-Riemannian metric onM are obtained byE = εq, F = 0 andG = 1. For
the moving frame{α′, β, α′ × β} we can calculate

β′ = ε1S(α
′ − α′ × β), α′′ = −Sβ − ε1Rα

′ × β, (4.8)

whereR = 〈α′′, α′ × β〉. Furthermore, using(4.8)we have

〈β′′, α′ × β〉 = S′ + ε1SR, 〈α′, β′′〉 = S′ + ε1SR.
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The unit normal vectorN is given by

N = 1√
q
(α′ × β − tβ′),

from which the coefficients of the second fundamental form are given by

e = 1√
q
(R+ (S′ + 2ε1SR)t), f = S√

q
, g = 0.

On the other hand, the mean curvatureH and the second Gaussian curvatureKII are obtained
respectively by

H = 1

2q3/2
(R+ (S′ + 2ε1SR)t), (4.9)

KII = ε1S
′

2Sq3/2
. (4.10)

DifferentiatingKII andH with respect tot, we have

(KII )t = −3

2q5/2
εε1S

′, (4.11)

Ht = 1

2q5/2
(εε1S

′ − εSR− εS(S′ + 2ε1SR)t). (4.12)

Suppose that the surfaceM satisfies the condition(1.2). Then, from(4.11) and (4.12)we
obtain

εS(S′ + 2ε1SR) = 0, 3aεε1S
′ − b(εε1S

′ − εSR) = 0. (4.13)

Using(4.13), we have(2a−b)R = 0. ThereforeS′ = 0 andR = 0 when 2a−b �= 0. Thus,
from (4.9)M is minimal, that is, it is a conjugate of Enneper’s surface of the 2nd kind as
space-like or time-like surface according toTheorem 2.1. This completes the proof. �

Remark. In Case 1 ofTheorem 4.1, if 2a − b = 0, the surfaceM satisfies the equation
KII = −2H . Furthermore, some of the surfaces satisfying that equation are the conoids of
the 1st, 2nd, and 3rd kind exhibited inExamples 3.1–3.3.

Theorem 4.2. Let M be a non-developable ruled surface with non-null base curve in a
three-dimensional Minkowski space such that the condition aH+ bK, a �= 0, b ∈ R, is a
constant along each ruling. Then, M is an open part of one of the following surfaces:

1. the helicoid of the1st kind as space-like or time-like surface,
2. the helicoid of the2nd kind as space-like or time-like surface,
3. the helicoid of the3rd kind as space-like or time-like surface,
4. the conjugate of Enneper’s surfaces of the2nd kind as space-like or time-like surface.

Proof. In order to prove the theorem, we split it into two cases.
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Case 1. As is described inTheorem 4.1we assume that the non-developable ruled surface
M of the three typesM1+,M3+ orM1− is parametrized by

x = x(s, t) = α(s)+ tβ(s)
such that〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. Using the same
notations given inTheorem 4.1the Gaussian curvatureK is given by

K = 〈N,N〉 eg− f 2

EG− F2
= Q2

D4
. (4.14)

DifferentiatingK with respect tot we obtain

Kt = 4ε1Q
2t

D6
. (4.15)

Suppose that the surfaceM satisfies the condition(1.3). First of all, we assume thatQ2 −
ε1t

2 > 0. Then, by(1.3), (4.4) and (4.15)we can show that the coefficients oft8, t6, t4, t2

andt0 are as follows:

t8 : ε1a
2J2 = 0, t6 : 2a2QJ(3F + QJ)− 4ε1a

2Q′2 + a2Q2J2 = 0,

t4 : 3ε1a
2Q2(3F + QJ)(F + QJ) = 0,

t2 : 3ε1a
2Q4Q′2 + a2Q4(3F + QJ)2 − 64b2Q4 = 0, t0 : a2Q6Q′2 = 0.

Thus we haveJ = F = Q′ = 0 andb = 0. Since the coefficients of the powers oft consist
of J, F,Q orQ′, (4.2) implies that the mean curvatureH is identically zero.

Next, we suppose thatQ2 − ε1t
2 < 0. In this case, by using(4.7) and (4.15)we can

also show that the surfaceM is minimal. Consequently, by the proof ofTheorem 4.1the
surfaceM is an open part of one of the helicoid of the 1st, 2nd and 3rd kind as space-like
or time-like surface.

Case 2. LetM be the non-developable ruled surface of typeM2+ or M2−. In this case,
the curveα is space-like or time-like andβ space-like butβ′ is light-like. We also use the
notations given inTheorem 4.1. On the other hand, the Gaussian curvatureK is obtained
by

K = S2

q2
, (4.16)

and the differentiation ofK with respect tot is given by

Kt = −4εS3

q3
. (4.17)

Suppose that the surfaceM satisfies the condition(1.3). Then we obtain by(4.12) and (4.17)

2εa2S(SS′ + 2ε1S
2R)2 = 0,

a2ε(SS′ + 2εS2R)(ε1(SS′ + 2ε1S
2R)− 4S(ε1S

′ − SR)) = 0,

2a2ε(ε1S
′ − SR)(S(ε1S

′ − SR)− ε1(SS′ + 2ε1S
2R)) = 0,

a2εε1(ε1S
′ − SR)2 − 64b2S6 = 0,
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which imply S′ = 0,R = 0 andb = 0. Thus, the surfaceM is minimal by(4.9). Conse-
quently,M is a conjugate of Enneper’s surface of the 2nd kind as space-like or time-like
surface according toTheorem 4.1. This completes the proof. �

Combining the results ofTheorems 4.1, 4.2 and 2.1, we have the following theorem.

Theorem 4.3. Let M be a non-developable ruled surface with non-null base curve in a
three-dimensional Minkowski space. Then, the following are equivalent:

1. M has pointwise1-type Gauss map.
2. M satisfies the equation aKII + bH = constant, a, b ∈ R − {0}, 2a− b �= 0, along each

ruling.
3. M satisfies the equation aH+ bK = constant, a �= 0, b ∈ R, along each ruling.

Theorem 4.4. Letα(s)+tβ(s) be a non-developable ruled surface with non-null base curve
in a three-dimensional Minkowski space such that the condition aKII + bK, a �= 0, b ∈ R,
is a constant along each ruling. Then, we have the following:

1. Non-cylindrical ruled surfaces such thatβ′(s) is non-null are parts of one of the following
surfaces:
(1) the helicoid of the1st kind as space-like or time-like surface,
(2) the helicoid of the2nd kind as space-like or time-like surface,
(3) the helicoid of the3rd kind as space-like or time-like surface.

2. Non-cylindrical ruled surfaces such thatβ′(s) is null have vanishing second Gaussian
curvature.

Proof. In order to prove the theorem, we also split it into two cases.
Case 1. As is described inTheorem 4.1we assume that the ruled surfaceM of the three

typesM1+,M3+ orM1− is assumed to be parametrized by

x = x(s, t) = α(s)+ tβ(s),
such that〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and〈α′, β′〉 = 0. Likewise byTheorem
4.1 the second Gaussian curvatureKII and the Gaussian curvatureK are given by(4.1)
and (4.14), respectively. Suppose that the surfaceM satisfies the condition(1.4). First, we
suppose thatQ2 − ε1t

2 > 0. Then, we have from(4.3) and (4.15)

t12 : ε1a
2J2 = 0, t8 : 2ε1a

2JQ3(5F − QJ)− ε1a
2Q2(F + 2QJ)(4JQ+ F) = 0,

t2 : 12ε1a
2Q8Q′2 + a2Q8(5F − QJ)2 − 64b2Q8 = 0, t0 : 4a2Q10Q′2 = 0,

which implyJ = F = Q′ = 0 andb = 0. Since the coefficients of the powers oft consist of
J, F,Q orQ′, the second Gaussian curvatureKII and the mean curvatureH are identically
zero by the help of(4.1) and (4.2). Thus, the surfaceM is minimal.

Next, we suppose thatQ2 − ε1t
2 < 0. In this case, by using(4.6) and (4.15)we can

also show thatM is minimal. Consequently, the surfaceM is an open part of one of the
helicoids of the 1st, 2nd and 3rd kind as space-like or time-like surfaces depending on Case
1 of Theorem 4.1.
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Case 2. LetM be a non-cylindrical ruled surface of typeM2+ or M2−. In this case, the
curveα is space-like or time-like andβ space-like butβ′ is light-like. Suppose that the
surfaceM satisfies the condition(1.4). Then we obtain by(4.11) and (4.17)

18εa2SS′2 = 0, 9εε1a
2S′2 − 64b2S6 = 0.

Therefore we haveS′ = 0 andb = 0. Thus, from(4.10)the second Gaussian curvatureKII

is identically zero. This completes the proof. �

Finally, we investigate the relations between the second Gaussian curvature, the Gaussian
curvature and the mean curvature of null scrolls inE

3
1.

Theorem 4.5. Let M be a null scroll in a three-dimensional Minkowski space. Then, M
satisfies the equationsK = H2,KII = H−1.

Proof. Let α = α(s) be a light-like curve inE3
1 andβ = β(s) be a light-like vector field

alongα. Then, the null scrollM is parametrized by

x = x(s, t) = α(s)+ tβ(s),
such that〈α′, α′〉 = 0, 〈β, β〉 = 0 and〈α′, β〉 = 1. Furthermore, without loss of generality,
we may chooseα as a null geodesic ofM. We then have〈α′(s), β′(s)〉 = 0 for all s. The
induced Lorentz metric onM is given byE = 〈β′, β′〉t2,F = 1,G = 0 and the unit normal
vectorN is obtained by

N = α′ × β + tβ′ × β.
Thus, the component functions of the second fundamental form are given by

e = 〈α′′ + tβ′′, N〉, f = 〈β′, α′ × β〉 = Q, g = 0,

which implyH = Q andK = Q2.
If 〈β′, β′〉 = 0, thenβ′ is either the zero vector or a null vector. Ifβ′ is the zero vector, the

surface is flat because off = Q = 0. Therefore,β′ is a null vector and there is a non-zero
smooth functionρ such thatβ = ρβ′. It is a contradiction by the properties ofα andβ.

Since it is described inSection 2, β′ cannot be a time-like vector and thus we can choose
the parameters in such a way that〈β′, β′〉 = 1. Let{α′, β, β′} be a null frame inE3

1. Then,
the vectorβ′′ can be expressed by

β′′ = −α′ + 〈α′, β′′〉β,
from which

ett = 2〈β′′, Nt〉 = 2〈β′′, β′ × β〉 = 2Q.

Therefore, using(1.1)and the above equations the second Gaussian curvatureKII is given
by

KII = 1

2Q2
ett = 1

Q
.

Thus, it easily follows thatKII = 1/H holds everywhere on a null scroll. This completes
the proof. �
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