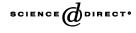


Available online at www.sciencedirect.com



JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 49 (2004) 89-100

www.elsevier.com/locate/jgp

Classification of ruled surfaces in Minkowski 3-spaces

Young Ho Kim^a, Dae Won Yoon^{b,*}

 ^a Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South Korea
 ^b Department of Mathematics, College of Education, Gyeongsang National University, Chinju 660-701, South Korea

Received 4 February 2002; received in revised form 15 April 2003

Abstract

In this paper, we study some properties about the second Gaussian curvature of ruled surfaces in a three-dimensional Minkowski space. Furthermore, we classify ruled surfaces in a three-dimensional Minkowski space in terms of the second Gaussian curvature, the mean curvature and the Gaussian curvature.

© 2003 Elsevier Science B.V. All rights reserved.

MSC: 53A10; 53B25; 53C50

Subj. Class .: Differential geometry

Keywords: Minkowski space; Ruled surface; Second Gaussian curvature; Mean curvature; Minimal surface

1. Introduction

Minimal surfaces are one of main objects which have drawn geometers' interest for a long time. In particular, the only minimal ruled surfaces in a three-dimensional Euclidean space \mathbb{E}^3 are the planes and the helicoids. In 1983, Kobayashi [8] classified space-like ruled minimal surfaces in a three-dimensional Minkowski space \mathbb{E}_1^3 , and de Woestijne [12] extended it to the Lorentz version in 1988. On the other hand, the authors [7] recently classified minimal ruled surfaces in terms of pointwise 1-type Gauss map in \mathbb{E}_1^3 .

A surface *M* in a three-dimensional Euclidean space \mathbb{E}^3 with positive Gaussian curvature *K* possesses a positive definite second fundamental form *II* if appropriately orientated.

^{*} Corresponding author.

E-mail addresses: yhkim@knu.ac.kr (Y.H. Kim), dwyoon@nongae.gsnu.ac.kr (D.W. Yoon).

Therefore, the second fundamental form defines a new Riemannian metric on M. In turn, we can consider the Gaussian curvature K_{II} of the second fundamental form which is regarded as a Riemannian metric. If a surface has non-zero Gaussian curvature everywhere, K_{II} can be defined formally and it is the curvature of the Riemannian or pseudo-Riemannian manifold (M, II).

Naturally, we can extend such a notion into that of surfaces in a three-dimensional Minkowski space \mathbb{E}_1^3 . Using classical notation, we denote the component functions of the second fundamental form by *e*, *f* and *g*. Thus we define the *second Gaussian curvature* by (cf. [2])

$$K_{II} = \frac{1}{(|eg| - f^2)^2} \left(\begin{vmatrix} -\frac{1}{2}e_{tt} + f_{st} - \frac{1}{2}g_{ss} & \frac{1}{2}e_s & f_s - \frac{1}{2}e_t \\ f_t - \frac{1}{2}g_s & e & f \\ \frac{1}{2}g_t & f & g \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2}e_t & \frac{1}{2}g_s \\ \frac{1}{2}e_t & e & f \\ \frac{1}{2}g_s & f & g \end{vmatrix} \right).$$
(1.1)

It is well known that a minimal surface has vanishing second Gaussian curvature but that a surface with vanishing second Gaussian curvature need not be minimal.

For study of the second Gaussian curvature, Koutroufiotis [10] has shown that a closed ovaloid is a sphere if $K_{II} = cK$ for some constant c or if $K_{II} = \sqrt{K}$. Koufogiorgos and Hasanis [9] proved that the sphere is the only closed ovaloid satisfying $K_{II} = H$, where H is the mean curvature. Also, Kühnel [11] studied surfaces of revolution satisfying $K_{II} = H$. One of the natural generalizations of surfaces of revolution is the helicoidal surfaces. Baikoussis and Koufogiorgos [1] proved that the helicoidal surfaces satisfying $K_{II} = H$ are locally characterized by constancy of the ratio of the principal curvatures. On the other hand, Blair and Koufogiorgos [2] investigated a non-developable ruled surface in \mathbb{E}^3 such that $aK_{II} + bH$, $2a + b \neq 0$, is a constant along each ruling. Also, they proved that a ruled surface with vanishing second Gaussian curvature is a helicoid.

In this article, we investigate and classify a non-developable ruled surface in a threedimensional Minkowski space \mathbb{E}^3_1 satisfying the conditions

 $aK_{II} + bH = \text{constant}, \quad 2a - b \neq 0,$ (1.2)

$$aH + bK = \text{constant}, \quad a \neq 0,$$
 (1.3)

 $aK_{II} + bK = \text{constant}, \quad a \neq 0,$ (1.4)

along each ruling.

2. Preliminaries

Let \mathbb{E}_1^3 be a three-dimensional Minkowski space with the scalar product of index 1 given by $\langle , \rangle = -dx_1^2 + dx_2^2 + dx_3^2$, where (x_1, x_2, x_3) is a standard rectangular coordinate system of \mathbb{E}_1^3 . A vector x of \mathbb{E}_1^3 is said to be *space-like* if $\langle x, x \rangle > 0$ or x = 0, *time-like* if $\langle x, x \rangle < 0$ and *light-like or null* if $\langle x, x \rangle = 0$ and $x \neq 0$. A time-like or light-like vector in \mathbb{E}_1^3 is said to be *causal*. Now, we define a ruled surface M in a three-dimensional Minkowski space \mathbb{E}_1^3 . Let J_1 be an open interval in the real line \mathbb{R} . Let $\alpha = \alpha(s)$ be a curve in \mathbb{E}_1^3 defined on J_1 and $\beta = \beta(s)$ a transversal vector field along α . For an open interval J_2 of \mathbb{R} we have the parametrization for M

$$x = x(s, t) = \alpha(s) + t\beta(s), \quad s \in J_1, \ t \in J_2.$$

The curve $\alpha = \alpha(s)$ is called a *base curve* and $\beta = \beta(s)$ a *director curve*. In particular, if β is constant, the ruled surface is said to be *cylindrical*, and *non-cylindrical* otherwise.

First of all, we consider that the base curve α is space-like or time-like. In this case, the director curve β can be naturally chosen so that it is orthogonal to α . Furthermore, we have ruled surfaces of five different kinds according to the character of the base curve α and the director curve β as follows. If the base curve α is space-like or time-like, then the ruled surface M is said to be of type M_+ or type M_- , respectively. Also, the ruled surface of type M_+ can be divided into three types. In the case that β is space-like, it is said to be of type M_+^1 or M_+^2 if β' is non-null or light-like, respectively. When β is time-like, β' must be space-like by causal character. In this case, M is said to be of type M_-^1 or M_-^2 if β' is non-null or light-like, respectively. When β_- is time-like, β' is non-null or light-like, respectively. Note that in the case of type M_-^1 to M_-^2 if β' is non-null or light-like, respectively. Note that in the case of type M_- the director curve β is always space-like (cf. [5,7]). The ruled surface of type M_+^1 or M_+^2 (resp. M_+^3 , M_-^1 or M_-^2) is clearly space-like (resp. time-like). But, if the base curve α is a light-like curve and the vector field β along α is a light-like vector field, then the ruled surface M is called a *null scroll* [6].

On the other hand, many geometers have been interested in studying submanifolds of Euclidean and pseudo-Euclidean space in terms of the so-called finite type immersion [3]. Also, such a notion can be extended to smooth maps on submanifolds, namely the Gauss map [4]. In this regards, the authors defined pointwise finite type Gauss map [7]. In particular, the Gauss map G on a submanifold M of a pseudo-Euclidean space \mathbb{E}_s^m of index s is said to be of *pointwise* 1-type if $\Delta G = fG$ for some smooth function f on M where Δ denotes the Laplace operator defined on M. The authors showed that minimal non-cylindrical ruled surfaces in a three-dimensional Minkowski space have pointwise 1-type Gauss map [7]. Based on this fact, the authors proved the following theorem which will be useful to prove our theorems in this paper.

Theorem 2.1 ([7]). Let M be a non-cylindrical ruled surface with space-like or time-like base curve in a three-dimensional Minkowski space. Then, the Gauss map is of pointwise 1-type if and only if M is an open part of one of the following spaces: the space-like or time-like helicoid of the 1st, the 2nd and the 3rd kind, the space-like or time-like conjugate of Enneper's surface of the 2nd kind.

3. Some examples

Before going into the study about a relation between the second Gaussian curvature and the mean curvature of ruled surfaces, let us see some examples of surfaces in \mathbb{E}_1^3 .

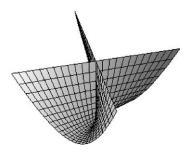


Fig. 1. A conoid of the 1st kind.

Example 3.1 (Conoid of the 1st kind). For a smooth function $\phi(s)$, we consider the surface M in \mathbb{E}^3_1 defined by

 $x(s, t) = (t \sinh s, t \cosh s, \phi(s)), \quad t < |\phi'(s)|.$

This parametrization defines a non-cylindrical ruled surface of type M^1_+ in \mathbb{E}^3_1 , which is called a conoid of the 1st kind (Fig. 1). In this case, the second Gaussian curvature K_{II} is given by

$$K_{II} = \frac{-\phi''(s)}{(-t^2 + \phi'^2(s))^{3/2}}t$$

Furthermore, the mean curvature H is obtained as

$$H = \frac{\phi''(s)}{2(-t^2 + \phi'^2(s))^{3/2}}t$$

Thus, the conoid of the 1st kind satisfies $K_{II} = -2H$.

Example 3.2 (Conoid of the 2nd kind). For a smooth function $\phi(s)$, the surface in \mathbb{E}_1^3 defined by

 $x(s, t) = (t \cosh s, \phi(s), t \sinh s)$

is a non-cylindrical ruled surface of type M_+^3 , which is said to be a conoid of the 2nd kind in \mathbb{E}_1^3 (Fig. 2). The second Gaussian curvature K_{II} is given by

$$K_{II} = \frac{\phi''(s)}{(t^2 + \phi'^2(s))^{3/2}}t.$$

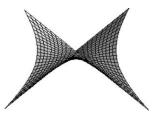


Fig. 2. A conoid of the 2nd kind.

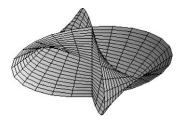


Fig. 3. A conoid of the 3rd kind.

And the mean curvature H is given by

$$H = \frac{-\phi''(s)}{2(t^2 + \phi'^2(s))^{3/2}}t.$$

Thus, the conoid of the 2nd kind satisfies $K_{II} = -2H$.

Example 3.3 (Conoid of the 3rd kind). For a smooth function $\phi(s)$, we consider the surface M in \mathbb{E}^3_1 defined by

$$x(s,t) = (\phi(s), t\cos s, t\sin s), \quad t < |\phi'(s)|.$$

This parametrization defines a non-cylindrical ruled surface of type M_{-}^1 in \mathbb{E}_1^3 , which is called a conoid of the 3rd kind (Fig. 3). The second Gaussian curvature K_{II} for it is given by

$$K_{II} = \frac{\phi''(s)}{(-t^2 + \phi'^2(s))^{3/2}}t,$$

and the mean curvature H is obtained as

$$H = \frac{-\phi''(s)}{2(-t^2 + \phi'^2(s))^{3/2}}t$$

Thus, the conoid of the 3rd kind satisfies $K_{II} = -2H$.

For a specific function ϕ and an appropriate interval of t in Examples 3.1–3.3, we have the graphs shown in Figs. 1–3.

4. Main theorems

In this section we study a ruled surface in a three-dimensional Minkowski space \mathbb{E}_1^3 satisfying the conditions (1.2)–(1.4). It is well known that a cylindrical ruled surface is developable, i.e., the Gaussian curvature *K* is identically zero. Therefore, the second fundamental form *II* is degenerate. Thus, non-cylindrical ruled surfaces are meaningful for our study.

Theorem 4.1. Let *M* be a non-developable ruled surface with non-null base curve in a three-dimensional Minkowski space such that the condition $aK_{II} + bH$, $a, b \in \mathbb{R} - \{0\}$,

 $2a - b \neq 0$, is a constant along each ruling. Then, M is an open part of one of the following surfaces:

- 1. the helicoid of the 1st kind as space-like or time-like surface,
- 2. the helicoid of the 2nd kind as space-like or time-like surface,
- 3. the helicoid of the 3rd kind as space-like or time-like surface,
- 4. the conjugate of Enneper's surfaces of the 2nd kind as space-like or time-like surface.

Proof. We consider two cases separately.

Case 1. Let *M* be a non-cylindrical ruled surface of the three types M_+^1 , M_+^3 or M_-^1 . Then the parametrization for *M* is given by

$$x = x(s, t) = \alpha(s) + t\beta(s),$$

such that $\langle \beta, \beta \rangle = \varepsilon_1 (= \pm 1), \langle \beta', \beta' \rangle = \varepsilon_2 (= \pm 1)$ and $\langle \alpha', \beta' \rangle = 0$. In this case α is the striction curve of *x*, and the parameter is the arc-length on the (pseudo-)spherical curve β . And we have the natural frame $\{x_s, x_t\}$ given by $x_s = \alpha' + t\beta'$ and $x_t = \beta$. Then, the first fundamental form of the surface is given by $E = \langle x_s, x_s \rangle = \langle \alpha', \alpha' \rangle + \varepsilon_2 t^2$, $F = \langle x_s, x_t \rangle = \langle \alpha', \beta \rangle$ and $G = \langle x_t, x_t \rangle = \varepsilon_1$. For later use, we define the smooth functions Q, J and D as follows:

$$Q = \langle lpha', eta imes eta'
angle
eq 0, \quad J = \langle eta'', eta' imes eta
angle, \quad D = \sqrt{|EG - F^2|}.$$

In terms of the orthonormal basis $\{\beta, \beta', \beta \times \beta'\}$ we obtain

$$\alpha' = \varepsilon_1 F\beta - \varepsilon_1 \varepsilon_2 Q\beta \times \beta', \qquad \beta'' = \varepsilon_1 \varepsilon_2 (-\beta + J\beta \times \beta'), \qquad \alpha' \times \beta = \varepsilon_2 Q\beta'.$$

On the other hand, one obtains $EG - F^2 = -\varepsilon_2 Q^2 + \varepsilon_1 \varepsilon_2 t^2$. And, the unit normal vector N is written as $N = 1/D(\varepsilon_2 Q\beta' - t\beta \times \beta')$. Then, the components e, f and g of the second fundamental form are expressed as

$$e = \frac{1}{D}(\varepsilon_1 Q(F - QJ) - Q't + Jt^2), \qquad f = \frac{Q}{D} \neq 0, \quad g = 0.$$

Therefore, using the data described above and (1.1), we obtain

$$K_{II} = \frac{1}{f^4} \left(ff_t \left(f_s - \frac{1}{2} e_t \right) - f^2 \left(-\frac{1}{2} e_{tt} + f_{st} \right) \right)$$

= $\frac{1}{2Q^2 D^3} (Jt^4 + \varepsilon_1 Q (F - 2QJ)t^2 + 2\varepsilon_1 Q^2 Q't + Q^3 (F + QJ)).$ (4.1)

Furthermore, the mean curvature H is given by

$$H = \frac{1}{2} \frac{Eg - 2Ff + Ge}{|EG - F^2|} = \frac{1}{2D^3} (\varepsilon_1 J t^2 - \varepsilon_1 Q' t - Q(F + QJ)).$$
(4.2)

First of all, we suppose that $Q^2 - \varepsilon_1 t^2 > 0$. We now differentiate K_{II} and H with respect to t, the results are

$$(K_{II})_{t} = \frac{1}{2Q^{2}D^{5}}(-\varepsilon_{1}Jt^{5} + Q(F + 2QJ)t^{3} + 4Q^{2}Q't^{2} + \varepsilon_{1}Q^{3}(5F - QJ)t + 2\varepsilon_{1}Q^{4}Q'), \qquad (4.3)$$

Y.H. Kim, D.W. Yoon/Journal of Geometry and Physics 49 (2004) 89-100

$$H_t = \frac{1}{2D^5} (Jt^3 - 2Q't^2 - \varepsilon_1 Q(3F + QJ)t - \varepsilon_1 Q^2 Q').$$
(4.4)

By the assumption (1.2) and the above equations we then have for the parameter t

$$a\varepsilon_{1}J = 0, \qquad aQF + 2aQ^{2}J + bJQ^{2} = 0, \qquad Q^{2}Q'(2a - b) = 0,$$

$$5\varepsilon_{1}aQ^{3}F - \varepsilon_{1}aQ^{4}J - 3\varepsilon_{1}bQ^{3}F - \varepsilon_{1}bQ^{4}J = 0, \qquad Q^{4}Q'(2a - b) = 0, \qquad (4.5)$$

which imply J = F = 0 and (2a - b)Q' = 0. Suppose that $2a - b \neq 0$, then Q' = 0. In this case the surface is minimal. Since $EG - F^2 = \varepsilon_1 \varepsilon_2 t^2 - \varepsilon_2 Q^2$ and $Q^2 - \varepsilon_1 t^2 > 0$. Therefore, the surface is space-like or time-like when $\varepsilon_2 = -1$ or $\varepsilon_2 = 1$, respectively.

But, $(\varepsilon_1, \varepsilon_2) = (-1, -1)$ is impossible because of the causal character. Let $(\varepsilon_1, \varepsilon_2) = (-1, 1)$. Then *M* is of the type M_+^3 . Thus the surface is a helicoid of the 3rd kind according to Theorem A. If $(\varepsilon_1, \varepsilon_2) = (1, \pm 1)$, then *M* is of the type M_+^1 or M_-^1 . Hence the surface is a helicoid of the 1st or 2nd kind according to Theorem 2.1.

Next, we suppose that $Q^2 - \varepsilon_1 t^2 < 0$. In this case, we have

$$(K_{II})_{t} = \frac{1}{2Q^{2}D^{5}} (\varepsilon_{1}Jt^{5} - Q(F + 2QJ)t^{3} - 4Q^{2}Q't^{2} + \varepsilon_{1}Q^{3}(-5F + QJ)t - 2\varepsilon_{1}Q^{4}Q'), \qquad (4.6)$$

$$H_t = \frac{1}{2D^5} (-Jt^3 + 2Q't^2 - \varepsilon_1 Q(3F + QJ)t + \varepsilon_1 Q^2 Q').$$
(4.7)

Thus, by the similar discussion as above we can also obtain J = F = 0 and Q' = 0 when $2a - b \neq 0$. Therefore, the surface is minimal. Since $EG - F^2 = -\varepsilon_2(Q^2 - \varepsilon_1 t^2)$ and $Q^2 - \varepsilon_1 t^2 < 0$. Consequently, *M* is space-like or time-like according to $\varepsilon_2 = 1$ or $\varepsilon_2 = -1$, respectively.

In this case, $\varepsilon_1 = 1$. Therefore, *M* is of type M^1_+ or M^1_- depending on $\varepsilon_2 = \pm 1$. Thus, the surface is a helicoid of the 1st and 2nd kind according to Theorem 2.1.

Case 2. Let *M* be a non-cylindrical ruled surface of type M_+^2 or M_-^2 . Then, the surface *M* is parametrized by

$$x(s,t) = \alpha(s) + t\beta(s),$$

such that $\langle \beta, \beta \rangle = 1$, $\langle \alpha', \beta \rangle = 0$, $\langle \beta', \beta' \rangle = 0$ and $\langle \alpha', \alpha' \rangle = \varepsilon_1(=\pm 1)$. We have put the non-zero smooth functions *q* and *S* as follows:

$$q = \|x_s\|^2 = \varepsilon \langle x_s, x_s \rangle = \varepsilon (\varepsilon_1 + 2St), \quad S = \langle \alpha', \beta' \rangle,$$

where ε denotes the sign of x_s . We note that $\beta \times \beta' = \beta'$. Then, the components of the induced pseudo-Riemannian metric on M are obtained by $E = \varepsilon q$, F = 0 and G = 1. For the moving frame $\{\alpha', \beta, \alpha' \times \beta\}$ we can calculate

$$\beta' = \varepsilon_1 S(\alpha' - \alpha' \times \beta), \qquad \alpha'' = -S\beta - \varepsilon_1 R\alpha' \times \beta,$$
(4.8)

where $R = \langle \alpha'', \alpha' \times \beta \rangle$. Furthermore, using (4.8) we have

$$\langle \beta'', \alpha' \times \beta \rangle = S' + \varepsilon_1 SR, \quad \langle \alpha', \beta'' \rangle = S' + \varepsilon_1 SR.$$

95

The unit normal vector N is given by

$$N = \frac{1}{\sqrt{q}} (\alpha' \times \beta - t\beta').$$

from which the coefficients of the second fundamental form are given by

$$e = \frac{1}{\sqrt{q}}(R + (S' + 2\varepsilon_1 SR)t), \quad f = \frac{S}{\sqrt{q}}, \qquad g = 0$$

On the other hand, the mean curvature H and the second Gaussian curvature K_{II} are obtained respectively by

$$H = \frac{1}{2q^{3/2}} (R + (S' + 2\varepsilon_1 SR)t),$$
(4.9)

$$K_{II} = \frac{\varepsilon_1 S'}{2Sq^{3/2}}.$$
(4.10)

Differentiating K_{II} and H with respect to t, we have

$$(K_{II})_t = \frac{-3}{2q^{5/2}} \varepsilon \varepsilon_1 S', \tag{4.11}$$

$$H_t = \frac{1}{2q^{5/2}} (\varepsilon \varepsilon_1 S' - \varepsilon SR - \varepsilon S(S' + 2\varepsilon_1 SR)t).$$
(4.12)

Suppose that the surface M satisfies the condition (1.2). Then, from (4.11) and (4.12) we obtain

$$\varepsilon S(S' + 2\varepsilon_1 SR) = 0, \qquad 3a\varepsilon\varepsilon_1 S' - b(\varepsilon\varepsilon_1 S' - \varepsilon SR) = 0. \tag{4.13}$$

Using (4.13), we have (2a-b)R = 0. Therefore S' = 0 and R = 0 when $2a - b \neq 0$. Thus, from (4.9) *M* is minimal, that is, it is a conjugate of Enneper's surface of the 2nd kind as space-like or time-like surface according to Theorem 2.1. This completes the proof.

Remark. In Case 1 of Theorem 4.1, if 2a - b = 0, the surface *M* satisfies the equation $K_{II} = -2H$. Furthermore, some of the surfaces satisfying that equation are the conoids of the 1st, 2nd, and 3rd kind exhibited in Examples 3.1–3.3.

Theorem 4.2. Let M be a non-developable ruled surface with non-null base curve in a three-dimensional Minkowski space such that the condition aH + bK, $a \neq 0$, $b \in \mathbb{R}$, is a constant along each ruling. Then, M is an open part of one of the following surfaces:

- 1. the helicoid of the 1st kind as space-like or time-like surface,
- 2. the helicoid of the 2nd kind as space-like or time-like surface,
- 3. the helicoid of the 3rd kind as space-like or time-like surface,
- 4. the conjugate of Enneper's surfaces of the 2nd kind as space-like or time-like surface.

Proof. In order to prove the theorem, we split it into two cases.

96

Case 1. As is described in Theorem 4.1 we assume that the non-developable ruled surface M of the three types M_+^1 , M_+^3 or M_-^1 is parametrized by

$$x = x(s, t) = \alpha(s) + t\beta(s)$$

such that $\langle \beta, \beta \rangle = \varepsilon_1(=\pm 1)$, $\langle \beta', \beta' \rangle = \varepsilon_2(=\pm 1)$ and $\langle \alpha', \beta' \rangle = 0$. Using the same notations given in Theorem 4.1 the Gaussian curvature *K* is given by

$$K = \langle N, N \rangle \frac{eg - f^2}{EG - F^2} = \frac{Q^2}{D^4}.$$
(4.14)

Differentiating K with respect to t we obtain

$$K_t = \frac{4\varepsilon_1 Q^2 t}{D^6}.\tag{4.15}$$

Suppose that the surface *M* satisfies the condition (1.3). First of all, we assume that $Q^2 - \varepsilon_1 t^2 > 0$. Then, by (1.3), (4.4) and (4.15) we can show that the coefficients of t^8 , t^6 , t^4 , t^2 and t^0 are as follows:

$$t^{8}: \varepsilon_{1}a^{2}J^{2} = 0, t^{6}: 2a^{2}QJ(3F + QJ) - 4\varepsilon_{1}a^{2}Q'^{2} + a^{2}Q^{2}J^{2} = 0,$$

$$t^{4}: 3\varepsilon_{1}a^{2}Q^{2}(3F + QJ)(F + QJ) = 0,$$

$$t^{2}: 3\varepsilon_{1}a^{2}Q^{4}Q'^{2} + a^{2}Q^{4}(3F + QJ)^{2} - 64b^{2}Q^{4} = 0, t^{0}: a^{2}Q^{6}Q'^{2} = 0.$$

Thus we have J = F = Q' = 0 and b = 0. Since the coefficients of the powers of t consist of J, F, Q or Q', (4.2) implies that the mean curvature H is identically zero.

Next, we suppose that $Q^2 - \varepsilon_1 t^2 < 0$. In this case, by using (4.7) and (4.15) we can also show that the surface M is minimal. Consequently, by the proof of Theorem 4.1 the surface M is an open part of one of the helicoid of the 1st, 2nd and 3rd kind as space-like or time-like surface.

Case 2. Let *M* be the non-developable ruled surface of type M^2_+ or M^2_- . In this case, the curve α is space-like or time-like and β space-like but β' is light-like. We also use the notations given in Theorem 4.1. On the other hand, the Gaussian curvature *K* is obtained by

$$K = \frac{S^2}{q^2},$$
 (4.16)

and the differentiation of K with respect to t is given by

$$K_t = -\frac{4\varepsilon S^3}{q^3}.\tag{4.17}$$

Suppose that the surface M satisfies the condition (1.3). Then we obtain by (4.12) and (4.17)

$$\begin{aligned} &2\varepsilon a^2 S(SS' + 2\varepsilon_1 S^2 R)^2 = 0, \\ &a^2 \varepsilon (SS' + 2\varepsilon S^2 R)(\varepsilon_1 (SS' + 2\varepsilon_1 S^2 R) - 4S(\varepsilon_1 S' - SR)) = 0, \\ &2a^2 \varepsilon (\varepsilon_1 S' - SR)(S(\varepsilon_1 S' - SR) - \varepsilon_1 (SS' + 2\varepsilon_1 S^2 R)) = 0, \\ &a^2 \varepsilon \varepsilon_1 (\varepsilon_1 S' - SR)^2 - 64b^2 S^6 = 0, \end{aligned}$$

which imply S' = 0, R = 0 and b = 0. Thus, the surface M is minimal by (4.9). Consequently, M is a conjugate of Enneper's surface of the 2nd kind as space-like or time-like surface according to Theorem 4.1. This completes the proof.

Combining the results of Theorems 4.1, 4.2 and 2.1, we have the following theorem.

Theorem 4.3. Let *M* be a non-developable ruled surface with non-null base curve in a three-dimensional Minkowski space. Then, the following are equivalent:

- 1. M has pointwise 1-type Gauss map.
- 2. *M* satisfies the equation $aK_{II} + bH = constant$, $a, b \in \mathbb{R} \{0\}$, $2a b \neq 0$, along each ruling.
- 3. *M* satisfies the equation aH + bK = constant, $a \neq 0$, $b \in \mathbb{R}$, along each ruling.

Theorem 4.4. Let $\alpha(s) + t\beta(s)$ be a non-developable ruled surface with non-null base curve in a three-dimensional Minkowski space such that the condition $aK_{II} + bK$, $a \neq 0, b \in \mathbb{R}$, is a constant along each ruling. Then, we have the following:

- 1. Non-cylindrical ruled surfaces such that $\beta'(s)$ is non-null are parts of one of the following surfaces:
 - (1) the helicoid of the 1st kind as space-like or time-like surface,
 - (2) the helicoid of the 2nd kind as space-like or time-like surface,
 - (3) the helicoid of the 3rd kind as space-like or time-like surface.
- 2. Non-cylindrical ruled surfaces such that $\beta'(s)$ is null have vanishing second Gaussian curvature.

Proof. In order to prove the theorem, we also split it into two cases.

Case 1. As is described in Theorem 4.1 we assume that the ruled surface M of the three types M_{+}^1 , M_{+}^3 or M_{-}^1 is assumed to be parametrized by

$$x = x(s, t) = \alpha(s) + t\beta(s),$$

such that $\langle \beta, \beta \rangle = \varepsilon_1(=\pm 1)$, $\langle \beta', \beta' \rangle = \varepsilon_2(=\pm 1)$ and $\langle \alpha', \beta' \rangle = 0$. Likewise by Theorem 4.1 the second Gaussian curvature K_{II} and the Gaussian curvature K are given by (4.1) and (4.14), respectively. Suppose that the surface M satisfies the condition (1.4). First, we suppose that $Q^2 - \varepsilon_1 t^2 > 0$. Then, we have from (4.3) and (4.15)

$$t^{12}: \varepsilon_1 a^2 J^2 = 0, \qquad t^8: 2\varepsilon_1 a^2 J Q^3 (5F - QJ) - \varepsilon_1 a^2 Q^2 (F + 2QJ) (4JQ + F) = 0,$$

$$t^2: 12\varepsilon_1 a^2 Q^8 Q'^2 + a^2 Q^8 (5F - QJ)^2 - 64b^2 Q^8 = 0, \qquad t^0: 4a^2 Q^{10} Q'^2 = 0,$$

which imply J = F = Q' = 0 and b = 0. Since the coefficients of the powers of t consist of J, F, Q or Q', the second Gaussian curvature K_{II} and the mean curvature H are identically zero by the help of (4.1) and (4.2). Thus, the surface M is minimal.

Next, we suppose that $Q^2 - \varepsilon_1 t^2 < 0$. In this case, by using (4.6) and (4.15) we can also show that M is minimal. Consequently, the surface M is an open part of one of the helicoids of the 1st, 2nd and 3rd kind as space-like or time-like surfaces depending on Case 1 of Theorem 4.1.

Case 2. Let *M* be a non-cylindrical ruled surface of type M_+^2 or M_-^2 . In this case, the curve α is space-like or time-like and β space-like but β' is light-like. Suppose that the surface *M* satisfies the condition (1.4). Then we obtain by (4.11) and (4.17)

$$18\varepsilon a^2 S S'^2 = 0, \qquad 9\varepsilon \varepsilon_1 a^2 S'^2 - 64b^2 S^6 = 0$$

Therefore we have S' = 0 and b = 0. Thus, from (4.10) the second Gaussian curvature K_{II} is identically zero. This completes the proof.

Finally, we investigate the relations between the second Gaussian curvature, the Gaussian curvature and the mean curvature of null scrolls in \mathbb{E}^3_1 .

Theorem 4.5. Let M be a null scroll in a three-dimensional Minkowski space. Then, M satisfies the equations $K = H^2$, $K_{II} = H^{-1}$.

Proof. Let $\alpha = \alpha(s)$ be a light-like curve in \mathbb{E}_1^3 and $\beta = \beta(s)$ be a light-like vector field along α . Then, the null scroll *M* is parametrized by

$$x = x(s, t) = \alpha(s) + t\beta(s)$$

such that $\langle \alpha', \alpha' \rangle = 0$, $\langle \beta, \beta \rangle = 0$ and $\langle \alpha', \beta \rangle = 1$. Furthermore, without loss of generality, we may choose α as a null geodesic of M. We then have $\langle \alpha'(s), \beta'(s) \rangle = 0$ for all s. The induced Lorentz metric on M is given by $E = \langle \beta', \beta' \rangle t^2$, F = 1, G = 0 and the unit normal vector N is obtained by

 $N = \alpha' \times \beta + t\beta' \times \beta.$

Thus, the component functions of the second fundamental form are given by

$$e = \langle \alpha'' + t\beta'', N \rangle, \qquad f = \langle \beta', \alpha' \times \beta \rangle = Q, \quad g = 0,$$

which imply H = Q and $K = Q^2$.

If $\langle \beta', \beta' \rangle = 0$, then β' is either the zero vector or a null vector. If β' is the zero vector, the surface is flat because of f = Q = 0. Therefore, β' is a null vector and there is a non-zero smooth function ρ such that $\beta = \rho\beta'$. It is a contradiction by the properties of α and β .

Since it is described in Section 2, β' cannot be a time-like vector and thus we can choose the parameter *s* in such a way that $\langle \beta', \beta' \rangle = 1$. Let $\{\alpha', \beta, \beta'\}$ be a null frame in \mathbb{E}^3_1 . Then, the vector β'' can be expressed by

 $\beta'' = -\alpha' + \langle \alpha', \beta'' \rangle \beta,$

from which

$$e_{tt} = 2\langle \beta'', N_t \rangle = 2\langle \beta'', \beta' \times \beta \rangle = 2Q$$

Therefore, using (1.1) and the above equations the second Gaussian curvature K_{II} is given by

$$K_{II} = \frac{1}{2Q^2} e_{tt} = \frac{1}{Q}.$$

Thus, it easily follows that $K_{II} = 1/H$ holds everywhere on a null scroll. This completes the proof.

Acknowledgements

The authors would like to express their deep thanks to the referee for giving them suggestions to improve the paper.

References

- C. Baikoussis, Th. Koufogiorgos, On the inner curvature of the second fundamental form of helicoidal surfaces, Arch. Math. 68 (1997) 169–176.
- [2] D.E. Blair, Th. Koufogiorgos, Ruled surfaces with vanishing second Gaussian curvature, Monatsh. Math. 113 (1992) 177–181.
- [3] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1984.
- [4] B.-Y. Chen, P. Piccinni, Submanifolds with finite type Gauss map, Bull. Aust. Math. Soc. 35 (1987) 161–186.
- [5] S.M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995) 285–304.
- [6] L.K. Graves, Codimension one isometric immersions between Lorentz spaces, Trans. Am. Math. Soc. 252 (1979) 367–392.
- [7] Y.H. Kim, D.W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000) 191–205.
- [8] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L^3 , Tokyo J. Math. 6 (1983) 297–309.
- [9] Th. Koufogiorgos, T. Hasanis, A characteristic property of the sphere, Proc. Am. Math. Soc. 67 (1977) 303–305.
- [10] D. Koutroufiotis, Two characteristic properties of the sphere, Proc. Am. Math. Soc. 44 (1974) 176–178.
- [11] W. Kühnel, Zur inneren Krümmung der zweiten Grundform, Monatsh. Math. 91 (1981) 241–251.
- [12] I.V. de Woestijne, Minimal surfaces in the 3-dimensional Minkowski space, in: Geometry and Topology of Submanifolds: II, World Scientific, Singapore, 1990, pp. 344–369.